jueves, 2 de junio de 2011
miércoles, 1 de junio de 2011
4.1 Definicion de Serie
4.1.1Serie finita
xi = 0 para todo i > n y yi = 0 para todo i > m. En este caso el producto de Cauchy de y se verifica es . Por lo tanto, para series finitas (que son sumas finitas), la multiplicación de Cauchy es directamente la multiplicación de las series.
4.1.2Serie infinita
- Primer ejemplo. Para alguna , sea y . Entonces
por definición y la fórmula binomial. Dado que, formalmente, y , se ha demostrado que . Como el límite del producto de Cauchy de dos series absolutamente convergentes es igual al producto de los límites de esas series, se ha demostrado por lo tanto la fórmula exp(a + b) = exp(a)exp(b) para todo .
- Segundo ejemplo. Sea x(n) = 1 para todo . Entonces C(x,x)(n) = n + 1 para todo por lo tanto el producto de Cauchy y no es convergente.
4.2 Serie numerica y convergencia, Prueba de la razon (Criterio de D'Alembert) y Prueba de la raiz (Criterio de Cauchy)
Serie Numerica y de Convergencia
En matemáticas, una secuencia es una lista ordenada de objetos (o eventos). Como un conjunto, que contiene los miembros (también llamados elementos o términos ), y el número de términos (posiblemente infinita) se llama la longitud de la secuencia. A diferencia de un conjunto, el orden importa, y exactamente los mismos elementos pueden aparecer varias veces en diferentes posiciones en la secuencia. Una secuencia es una discreta función.
En matemáticas, una secuencia es una lista ordenada de objetos (o eventos). Como un conjunto, que contiene los miembros (también llamados elementos o términos ), y el número de términos (posiblemente infinita) se llama la longitud de la secuencia. A diferencia de un conjunto, el orden importa, y exactamente los mismos elementos pueden aparecer varias veces en diferentes posiciones en la secuencia. Una secuencia es una discreta función.
Por ejemplo, (C, R, Y) es una secuencia de letras que difiere de (Y, C, R), como las cuestiones de pedido. Las secuencias pueden ser finitos, como en este ejemplo, o infinita, como la secuencia de todos, incluso positivos enteros (2, 4, 6 ,…). secuencias finitos se conocen como cadenas o palabras y secuencias infinitas como los arroyos. La secuencia vacía () se incluye en la mayoría de las nociones de secuencia, pero pueden ser excluidos en función del contexto.
Ejemplos y notacion
Hay muchas diferentes nociones de secuencias en las matemáticas, algunas de las cuales ( por ejemplo, la secuencia exacta ) no están cubiertos por las anotaciones que se presentan a continuación.
Además de identificar los elementos de una secuencia por su posición, como “la tercera elemento”, elementos que pueden dar los nombres de referencia conveniente. Por ejemplo, una secuencia podría ser escrito como ( un uno , un dos , un dos , …), o ( b 0 , b 1 , b 2 , …), o ( c 0 , c 2 , c 4 , …), dependiendo en lo que es útil en la aplicación.
Finito y lo infinito Una definición más formal de una secuencia finita con los términos de un conjunto S es una función de {1, 2, …, n } a S por alguna n > 0. Una secuencia infinita de S es una función de {1, 2, … A} S. Por ejemplo, la secuencia de números primos (2,3,5,7,11, …) es la función 1 → 2 , 2 → 3 , 3 → 5 , 4 → 7 , 5 → 11 , ….
Una secuencia de longitud finita n es también llamado n -tupla; secuencias finitas incluyen la secuencia vacía () que no tiene elementos.
Una de las funciones de todos los números enteros es que en un conjunto a veces se denomina secuencia infinita-bi o dos vías secuencia infinita. Un ejemplo es la secuencia bi-infinita de todos los enteros pares (…, −4, −2, 0, 2, 4, 6, 8 …).
Multiplicativo Deja una = ( una secuencia definida por una función f : {1, 2, 3, …} → {1, 2, 3, …}, de tal manera que un i = f (i). La secuencia es multiplicativo si f ( xy ) = f ( x ) f ( y ) para todo x , y tales que x e y son primos entre sí.
Criterio de D'Alembert (Criterio de la razón)
Sea una serie , tal que ak > 0 ( serie de términos positivos).
Si existe
con , el Criterio de D'Alembert establece que:
- si L < 1, la serie converge.
- si L > 1, entonces la serie diverge.
- si L = 1, no es posible decir algo sobre el comportamiento de la serie.
En este caso, es necesario probar otro criterio, como el criterio de Raabe.
Criterio de Cauchy (raíz enésima)
Sea una serie , tal que ak > 0 (serie de términos positivos). Y supongamos que existe
- , siendo
Entonces, si:
- L < 1, la serie es convergente.
- L > 1 entonces la serie es divergente.
- L=1, no podemos concluir nada a priori y tenemos que recurrir al criterio de Raabe, o de comparación, para ver si podemos llegar a alguna conclusión.
Suscribirse a:
Entradas (Atom)